aUTONOMOUS
MALLA REDDY COLLEGE OF ENGINEERING \&TECHNOLOGY
(Autonomous Institution - UGC, Govt. of India)
Sponsored by CMR Educational Society
(Affiliated to JNTU, Hyderabad, Approved by AICTE - Accredited by NBA \& NAAC - „A" Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via Hakimpet), Secunderabad - 500100, Telangana State, India. Contact Number: 040-23792146/64634237, E-Mail ID: mrcet2004@gmail.com, website: www.mrcet.ac.in

DEPARTMENT OF INFORMATION TECHNOLOGY II B.TECH I SEMESTER R15 SUPPLEMENTARY PREVIOUS QUESTION PAPERS

LIST OF SUBJECTS

CODE	NAME OF THE SUBJECT
R15A0510	Computer Organization
R15A0461	Digital Logic Design
R15A0504	Data Structures using C++
R15A0401	Electronic Devices and Circuits
R15A0503	Mathematical Foundation of Computer Science
R15A0024	Probability and Statistics

MALLA REDDY COLLEGE OF ENGINEERING \& TECHNOLOGY

(Autonomous Institution - UGC, Govt. of India)
II B.Tech I Semester Supplementary Examinations, October 2020 Computer Organization

(IT)										
Roll No										

Time: 2 hours
Max. Marks: 75
Answer Any Four Questions
All Questions carries equal marks.
1 Explain the functional units of a basic computer with neat diagram.
2 a) Explain the following shift micro-operations with example:
i. Logical shift ii. Circular shift iii. Arithmetic shift.
b) An 8 -bit register contains the binary value 10011100 . What is the register value after arithmetic shift right? Starting from the initial number 10011100 , determine the register value after an arithmetic shift left and state whether there is an overflow.

3 a) How do you check the instructions set completeness
b) Demonstrate the direct and indirect address in organising stored program.

4 a) Sketch out the organization of micro programmed control unit and explain about it.
b) How do you perform selection of address for control memory using conditional branching?

5 Evaluate the arithmetic statement $\mathrm{X}=(\mathrm{A}+\mathrm{B})^{*}(\mathrm{C}+\mathrm{D})$ and illustrate the influence of the number of addresses using zero, one, two, or three address instructions .

6 Explain the Booths multiplication algorithm with multiplier as 10011 and multiplicand as 10111.

7 Explain the instruction pipeline with an example.
8 How do you initialize the cache memory and how do you perform write operation on it?

Roll No										

Time: 2 hours
Max. Marks: 75

Answer Any Four Questions

All Questions carries equal marks.
1 a) Explain Gray code and write 4 bit gray code.
b) Convert the decimal number 431 to binary in two ways:
i) Convert directly to binary;
ii) Convert first to hexadecimal and then from hexadecimal to binary. Which method is faster?
2 a) Find the canonical sum of products and product of sums expression for the function:

$$
F=X_{1} X_{2} X_{3}+X_{1} X_{3} X_{4}+X_{1} X_{2} X_{4} .
$$

b) Write the expression for a 4-input AND gate. Construct the complete truth table showing the output for all possible cases.
3 Using the Karnaugh map method, simplify the following function; obtain its sum of the products form, and product of the sums form. Realize it with NOR gates:
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(4,5,7,12,14,15)+\Sigma \mathrm{d}(3,8,10)$.
4 Using the Quine-McCluskey method obtain all the prime implicants, essential prime implicants, and minimized Boolean expression for the function:
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\sum(4,5,6,7,9,10,14,19,26,30,31)$
5 a) What is a full-adder? Draw its logic diagram with basic gates.
b) Implement the Boolean function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,3,4,11,12,13,15)$ using:
(i) decoder and external gates, and
(ii) 8-to-1 MUX and external gates.

6 a) Design an Excess-3-to-8421 code converter using a 4-to-16 decoder with enable
input E ' and associated gates.
b) Construct a 4-to-16-line decoder with five 2-to-4-line decoders with enable.

7 Describe the operation of SR, T, D and JK Flip-Flops with the help of their truth tables and gate level diagrams.
8 Design an Excess-3-to-BCD code converter using:
(i) PROM
(ii) PLA
(iii) PAL.

Code No: R15A0504
MALLA REDDY COLLEGE OF ENGINEERING \& TECHNOLOGY (Autonomous Institution - UGC, Govt. of India)
II B.Tech I Semester Supplementary Examinations, October 2020 Data Structures using C++
(CSE \& IT)

Time: 2 hours

Roll No										

Max. Marks: 75
Answer Any Four Questions
All Questions carries equal marks.

1 a) How do you analyse the complexity of an algorithm?
b) Write C++ program for heap sorting technique.
(a) Convert the given infix expression into post fix expression and explain the representation of stacks used for conversion. $\mathrm{A} / \mathrm{B} * \mathrm{C}-\mathrm{D}+\mathrm{E} /(\mathrm{F}+(\mathrm{G}+\mathrm{H}))$.
(b) Construct a Binary Search Tree for the given elements $\{1,7,5,50,40,10\}$ and find its in-order and pre-order traversals.
a) Explain the array representation of a threaded binary tree.
b) Discuss about the ADT Binary Tree

5 What is a priority queue? How will you implement stack using priority queue.
6 Explain about multiway merging and polyphase merging.
7 a) Write short notes on Extendible hashing
b) Define dictionaries. Explain the different ways to represent dictionaries.

8 a) Explain about Adjacency matrix
b) Trace out the DFS traversals for the following graph.

Roll No										

Time: 2 hours
Max. Marks: 75
Answer Any Four Questions
All Questions carries equal marks.
1 Derive the expression for the transition capacitance of a PN junction diode.
Explain Zener voltage regulator and give its limitations.
2 Discuss the formation and Volt-amp characteristics of a PN Junction.
3 Draw the full wave rectifier circuit diagram and derive the expression for I_{DC}, $\mathrm{I}_{\text {RMS }}$, ripple factor, PIV TUF and efficiency.

4 Explain why π filters are not suitable for varying loads. Why series inductor and C-section filter cannot be used with HWR. Derive the maximum efficiency of a half wave rectifier.

5 Explain the PNP transistor components. Discuss the early effect. What are the effects produced by base width modulation?

6 Draw the circuit for a common base BJT and explain the input and output characteristics for the same.

7 .Draw the self-biasing circuit for CE amplifier and derive the expression for the stability factor.

8 With help of suitable diagrams explain the working of 2 different types of MOSFET.

Code No: R15A0503

(CSE \& IT)

Roll No										

Time: 2 hours

$$
* * *
$$

1 Explain the proof of contradiction
2 What is Automatic Theorem Proving. Explain with example.
3 Describe the Semi groups and monads.
4 Discuss about the
a) groups
b)sub groups
c)homomorphism
d)Isomorphism

5 Understand the Pigeon hole principles.
6 Illustrate the applications of Pigeon hole principle
7 Solve the recurrence relation of Fibonacci series.
8 Write short notes on
a)Euler Circuits
b)Chromatic Numbers

Roll No										

Time: $\mathbf{2}$ hours
Max. Marks: 75
Answer Any Four Questions
All Questions carries equal marks.
1 In a bolt factory machines A, B, C manufacture $20 \%, 30 \%$ and 50% of the total of their output and $6 \%, 3 \%$ and 2% are defective. A bolt is drawn at random and found to be defective. Find the probabilities that it is manufactured from (i) Machine A (ii) Machine B (iii) Machine C.

2 In a Normal distribution, 7% of the items are under 35 and 89% are under 63 . Determine the mean and variance of the distribution.

3 Calculate Karl Person's correlation co-efficient for the following data.

X	38	45	46	38	35	38	46	32	36	38
Y	28	34	38	34	36	26	28	29	36	25

4 State the various properties of regression coefficients.
5 What is the size of the smallest sample required to estimate an unknown proportion to within a maximum error of 0.06 with at least 95% confidence.

6 Find 95% confidence limits for the mean of a normally distributed population from which the following sample was taken $15,17,10,18,16,9,7,11,13,14$. (Table value=2.26)
7 Random samples of 400 men and 200 women in a locality were asked whether they would like to have a bus stop near their residence. 200 men and 40 women are in favour of the proposal. Test the significance between the differences of two proportions at 5\% level.

8 A car park contains 5 cars. The arrival of cars is poisson with a mean rate of 10 per hour. The length of the time the car spends in the system has negative exponential distribution with mean 2 hours .How many cars are there in the car park on average and what is the probability that a newly arriving customer finds the car park full and having to park his car elsewhere.

